Semi-infinite programming, differentiability and geometric programming: Part II
نویسندگان
چکیده
منابع مشابه
Semi-infinite programming
A semi-infinite programming problem is an optimization problem in which finitely many variables appear in infinitely many constraints. This model naturally arises in an abundant number of applications in different fields of mathematics, economics and engineering. The paper, which intends to make a compromise between an introduction and a survey, treats the theoretical basis, numerical methods, ...
متن کاملGeneralized semi-infinite programming: Theory and methods
Generalized semi-infinite optimization problems (GSIP) are considered. The difference between GSIP and standard semi-infinite problems (SIP) is illustrated by examples. By applying the ’Reduction Ansatz’, optimality conditions for GSIP are derived. Numerical methods for solving GSIP are considered in comparison with methods for SIP. From a theoretical and a practical point of view it is investi...
متن کاملOn affine scaling and semi-infinite programming
In this note we are concerned with the generalization given by Ferris and Philpott [3] of the affine scaling algorithm discovered by Dikin [2] to solve semi-infinite linear programming problems, in which the number of variables is finite, but the number of constraints is not. In [3] a discrepancy is pointed out between the classical algorithm and its generalization. The purpose of this note is ...
متن کاملSemi-infinite linear programming approaches to semidefinite programming problems∗
Interior point methods, the traditional methods for the SDP , are fairly limited in the size of problems they can handle. This paper deals with an LP approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the SDP and discuss the issue of its discretization in some detail. We further show that a lemma due Pataki on the geometry of the SDP...
متن کاملAn Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming
In this paper, an unconstrained convex programming dual approach for solving a class of linear semi-infinite programming problems is proposed. Both primal and dual convergence results are established under some basic assumptions. Numerical examples are also included to illustrate this approach.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1969
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1969.103204